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Abstract

Motivation: Clustering is a fundamental task in the analysis of nucleotide sequences. Despite the exponential in-
crease in the size of sequence databases of homologous genes, few methods exist to cluster divergent sequences.
Traditional clustering methods have mostly focused on optimizing high speed clustering of highly similar sequen-
ces. We develop a phylogenetic clustering method which infers ancestral sequences for a set of initial clusters and
then uses a greedy algorithm to cluster sequences.

Results: We describe a clustering program AncestralClust, which is developed for clustering divergent sequences.
We compare this method with other state-of-the-art clustering methods using datasets of homologous sequences
from different species. We show that, in divergent datasets, AncestralClust has higher accuracy and more even clus-
ter sizes than current popular methods.

Availability and implementation: AncestralClust is an Open Source program available at https://github.com/lpipes/
ancestralclust.

Contact: lpipes@berkeley.edu or rasmus_nielsen@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional clustering methods such as UCLUST (Edgar, 2010) and
CD-HIT (Fu et al., 2012) use hierarchical or greedy algorithms that
rely on user input of a sequence identity threshold. These methods
were developed for high speed clustering of a vast quantity of highly
similar sequences (Ghodsi et al., 2011; Li et al., 2001; Edgar, 2010)
and, generally, these methods are considered unreliable for identity
thresholds <75% because of either the poor quality of alignments at
low identities (Zou et al., 2018) or because the performance of the
method drops dramatically with low identities (Huang et al., 2010).
At low identities, these methods produce uneven clusters where the
majority of sequences are contained in only one or a few clusters
(Chen et al., 2018). A high variance in cluster sizes may reduce the
utility of clustering for many practical purposes since the goal of
clustering typically is to reduce computational complexity of down-
stream analyses that are limited by the size of the largest clusters.
Clustering of divergent sequences is an important step in genomics
analysis because it allows for an early divide-and-conquer strategy

that will significantly increase the speed of downstream analyses
(Zheng et al., 2019) and many fundamental questions in metage-
nomics can be addressed by clustering of divergent sequences, such
as the identification of gene families, and identification of sequences
at the order, class or phylum taxonomic levels. Currently, there are
no clustering methods that can accurately cluster large taxonomical-
ly divergent metabarcoding reference databases such as the Barcode
of Life database (Ratnasingham and Hebert, 2007) in relatively even
clusters. Only a few other methods, such as SpClust (Matar et al.,
2019) and TreeCluster (Balaban et al., 2019), exist for clustering po-
tentially divergent sequences. SpClust creates clusters based on the
use of Laplacian Eigenmaps and a Gaussian Mixture Model based
on a similarity matrix calculated on all input sequences. While this
approach is highly accurate, the calculation of an all-to-all similarity
matrix is computationally demanding. For example, an all-by-all
comparison for clustering 8 million environmental DNA (eDNA)
reads by Rusch et al. (2007) took > 1 year on a 100-CPU cluster.
TreeCluster uses user-specified constraints for splitting a
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phylogenetic tree into clusters. However, TreeCluster requires an
input tree and even though some phylogenetic methods exist to es-
timate trees from a large number of sequences (Stamatakis, 2014),
it can also be prohibitively slow for large numbers of divergent
sequences where a phylogenetic tree is difficult to estimate reliably.
With the increasing size of reference databases (Schoch et al.,
2020), there is a need for new computationally efficient methods
that can cluster divergent sequences. Here, we present
AncestralClust which is specifically developed for clustering of di-
vergent metabarcoding reference sequences in clusters of relatively
even size.

2 Materials and methods

To cluster divergent sequences, we developed AncestralClust written
in C (Fig. 1). The algorithm proceeds by first (i) selecting r random
sequences for pairwise alignment using the wavefront algorithm
(Marco-Sola et al., 2020). We choose a random subset of sequences
to reduce the computational burden of performing all-to-all align-
ments. The wavefront algorithm, which is an approximating algo-
rithm for pairwise alignment with affine gap penalty, is used as a
tradeoff between computational time and accuracy since it runs in
time linear with the sequence length and divergence. If computation-
al time is not a concern the Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970), which has computational com-
plexity that is quadratic in sequence length, can also be used for
alignments. (ii) A Jukes-Cantor (Jukes et al., 1969) distance matrix
is then constructed from the alignments and a Neighbor-joining
phylogenetic tree (Saitou and Nei, 1987) is estimated. The Jukes-
Cantor model is chosen for computational speed, but more complex
models could in principle be used to potentially increase accuracy
but also increase computational time. (iii) The leaves are clustered
by cutting the b—1 longest branches in the tree to yield b subtrees
(corresponding to b clusters of leaf nodes). These subtrees comprise
the initial starting clusters. The next step (iv) is to estimate the ances-
tral sequence in the root of each subtree. To increase accuracy, the
sequences in each initial starting cluster are re-aligned in a multiple
sequence alignment using kalign3 (Lassmann, 2020). Kalign3 was
chosen to perform the multiple sequence alignments because of its
accuracy and speed. Next, a new Neighbor-joining tree (Saitou and
Nei, 1987) is constructed from each initial starting cluster, and each
tree is midpoint rooted (Farris, 1972). The midpoint root method
was chosen for computational speed. The ancestral sequences at the
root of the tree of each cluster are estimated using the maximum of
the posterior probability of each nucleotide using standard program-
ming algorithms from phylogenetics (see e.g. Yang, 2014). The an-
cestral sequences are used as the representative sequence for each
cluster. Next, (v) the remaining sequences (the ones currently not
assigned to any cluster) are aligned to each of the b ancestral sequen-
ces and a Jukes-Cantor distance is calculated. If the shortest distance
to any of the b ancestral sequences is larger than the average dis-
tance between clusters, the sequence is saved for assignment using
an iterative algorithm where the sequence will be contained in a new
cluster. If the shortest distance to any of the b ancestral sequences is
less than or equal to the average distance between clusters, the se-
quence is assigned to each cluster based on the shortest Jukes-
Cantor distance from the wavefront algorithm alignment between
the sequence and the b ancestral sequences. This iterative algorithm
proceeds by repeating steps 1–5 above for the previously unassigned
sequences. If the number of sequences is < r, then r becomes the
number of unassigned sequences. In each iteration after the first iter-
ation, a cut of a branch in the phylogenetic tree is chosen if the
branch is longer than the average length of branches cut in the first
iteration. We iterate this process until all sequences are assigned to a
cluster.

Algorithm 1 provides an overview of the algorithm using the fol-
lowing notation: N is the number of sequences to assign, A ¼
fA1; . . . ;ANg is the set of sequences, B ¼ fB1; . . . ;Brg is a set of r
randomly chosen sequences, X ¼ fx1; . . . ;xkg is the set of all k clus-
ters to be returned by the algorithm, i.e. a partition of A into k sets,

D is a matrix of Jukes-Cantor distances, Tree is a binary tree, E ¼
fE1; . . . ;Ebg is a partition of sequences, q is the average length of
branches cut in the first iteration, c is a midpoint rooting (a point in
the tree), Xi is the ancestral sequence reconstruction at ci for Treei

estimated from the sequences in Ei, and � is the average distance be-
tween clusters.Here, B random (r, A) is an operation in which r
distinct sequences are selected uniformly at random from A to form
the set of sequences B.
ðE; qÞ  max_branch_cut ðb� 1;TreeÞ is an operation in which

the set of leaf nodes in Tree are divided into a partition E with b sub-
sets, by cutting the b—1 longest branches in Tree, and in which q is
set to be equal to the average length of the branches cut.

E fixed_branch_cut(q, Tree) is an operation in which the set
of leaf nodes in Tree are partitioned by cutting all branches in Tree
with a length larger than q to form a partition E with b subsets.

dðDi;DjÞ is the average Jukes-Cantor distance between sequen-
ces in Ei and Ej and dðDi;DjÞ is the average of this quantity over all
pairs ðEi;EjÞ; i 6¼ j, in E.

In praxis, only one or two iterations are needed for most datasets
if r is defined to be sufficiently large. The method is parallelized dur-
ing the calculation of D, during the multiple sequence alignment
(multiple_alignment ðEiÞ), and the assignment of unassigned sequen-
ces to clusters.

This procedure relies on arbitrary choices of r and b. However,
we calibrate the choices of r and b using a procedure described in
Supplementary Appendix SA.

Algorithm 1: Overview of algorithm
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Notice that, when aligning the r sequences in B, a pairwise align-
ment is first used to define clusters and then a multiple alignment is
used within each cluster when estimating phylogenetic trees. While
this procedure does save computational time, as multiple alignments
are expensive, the main reason for this two-step procedure is that
multiple alignments, that include highly divergent sequences, can
negatively affect alignment accuracy even among more similar
sequences in the alignment. Initially, generating a large combined
multiple alignment for all sequences in B does, therefore, not lead to
as good of a performance when estimating phylogenetic trees within
each cluster, as when a multiple alignment is performed separately
for each cluster.

We compare AncestralClust to two state-of-the-art clustering
methods, UCLUST (Edgar, 2010) and CD-HIT (Fu et al., 2012),
and a clustering method specifically developed for divergent sequen-
ces, SpClust (Matar et al., 2019). We use a variety of measurements
to assess the accuracy and evennness of the clustering. We first cal-
culate two traditional measures of accuracy: purity and normalized
mutual information (NMI), used in Bonder et al. (2012). Although
we acknowledge that inaccuracies in taxonomy exist in public se-
quence databases (see Nilsson et al., 2006), for the purpose of evalu-
ating performance, we define a taxonomic group as belonging to
phylum, class, order, family, genus or species as classified by the
National Center for Biotechnology Information (NCBI) taxonomic
system. Since taxonomic groups are not comparable across taxo-
nomic levels (i.e. classes compared with genera), we calculate accur-
acy measures for each taxonomic level separately.

To describe the performance measures, we first need to introduce
some notation. wi is, as previously defined, the set of sequences in
cluster i. The number of different sequences in cluster i is the cardin-
ality of wi, jwij.

The purity of clusters, as defined by (Schütze et al., 2008) , is
then calculated as:

purityðX;CÞ ¼ 1

N

Xk

i¼1

max
j
jxi \ cjj (1)

where C ¼ fc1; c2; . . . ; cdg is the partition of the data into d taxonomic
groups, where cj is the set of all sequences belonging to taxonomic
group j, and N is the total number of sequences. Notice that purity takes
a value in fk=N; ðkþ 1Þ=N; . . . ; 1g and is equal to 1 if there are no
clusters that contain more than one taxonomic group. Purity tends to in-
crease as the number of clusters increases. For example, purity becomes
1 when each sequence is assigned to its own cluster.

We next describe the calculation of NMI. First, we define the
proportion of sequences in cluster i is qi ¼ jxij=N and the entropy
of the clusters as

HðXÞ ¼ �
Xk

i¼1

qilog2ðqiÞ:

The proportion of sequences with taxonomic assignment j is
pj ¼ jcjj=N. The entropy of the taxonomic groups is defined as

HðCÞ ¼ �
Xd

j¼1

pjlog2ðpjÞ:

We also define the frequency of assignment j in cluster i as

pjji ¼ jxi \ cjj=jxij;

and the conditional entropy as

Fig. 1. Overview of AncestralClust. In (1), r random sequences are chosen from A for the initial clusters. (2) Using the r random sequences a Jukes-Cantor distance matrix is

constructed. Using the distance matrix, a Neighbor-joining tree is estimated and in (3) b—1 cuts are made to create b clusters. In (4), each cluster is aligned using a multiple se-

quence alignment and a Neighbor-joining tree is estimated. Each tree is midpoint rooted, and the ancestral sequences are reconstructed in the root node of each tree. In (5), the

rest of the unassigned sequences in A, are then aligned to the ancestral sequences of each cluster and the shortest Jukes-Cantor distance to each ancestral sequence is calculated.

If the shortest distance from the unassigned sequence to any of the ancestral sequences is larger than the average distance between clusters, then the unassigned sequence is

saved for the next iteration. If the shortest distance to any of the ancestral sequences is less than or equal to the average distance between clusters, the sequence is assigned to

the cluster with the shortest distance from its ancestral sequence. The process is iterated until all sequences are assigned to a cluster. In this specific example, r¼16 and b¼4
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HðCjXÞ ¼ �
Xk

i¼1

qi

Xd

j¼1

pjjilog2ðpjjiÞ:

NMI is then calculated as

NMIðX;CÞ ¼ 2ðHðCÞ �HðCjXÞÞ
½HðXÞ þHðCÞ� (2)

To measure the evenness of the clusters, we use the Coefficient
of Variation, which is calculated as:

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
j¼1

ðjcjj �mÞ2=ðd � 1Þ
s

m
(3)

where m ¼

Pd

j¼1

jcj j

d is the mean size of the clusters. We also use a taxo-
nomic incompatibility measure to assess the accuracy of the clusters.
A taxonomic incompatibility is assigned if two taxonomic groups
both exist in two different clusters. One taxonomic group can be
split into multiple clusters, but if taxonomic groups are monophylet-
ic, two groups should not both be found in more than one cluster.
The total taxonomic incompatibility is then calculated by summing
over all species found in the dataset. More precisely, let Sxi

ðcl; cjÞ be
an indicator variable that returns one if species cl and cj are both
found in cluster i (i.e. jxi \ cljjxi \ cjj > 0) and zero otherwise.
Then the taxonomic incompatibility is defined as:

TIðX;CÞ ¼
Xd�1

l¼1

Xd

j¼iþ1

maxf0;
Xk

i¼1

Sxi
ðcl; cjÞ � 1g: (4)

Notice that, this measure does not penalize paraphyletic clusters
but only penalizes clustering that is strictly incompatible with a phy-
logentic tree, i.e. polyphyletic clusters.

All three measures (purity, NMI and taxonomic incompatibility)
are very sensitive to both the number of clusters and the variance in
cluster size. For example, if all sequences are assigned to different
clusters or if all sequences are assigned to the same cluster, the taxo-
nomic incompatibility is, by definition, zero. In general, taxonomic
incompatibility has the potential to be highest, and NMI has the po-
tential to be lowest, when there is an intermediate amount of clus-
ters of equal size. With high variance in cluster size there is less
potential for generating clusters with high taxonomic incompatibil-
ity of low NMI. To address these issues and to allow fair compari-
son when numbers of clusters and variance in cluster sizes vary, we
calculated the relative purity, relative NMI and relative incompati-
bility. We calculate these measures by scaling them relative to their
expected values under random assignments given the number of

clusters and the cluster sizes. We estimate relative NMI by dividing
the raw NMI score by the average NMI of 10 clusterings, in which
sequences have been assigned at random with equal probability to
clusters, such that the cluster sizes are the same as the cluster sizes
produced in the original clustering. We use the same procedure to
convert the purity measure into relative purity and the taxonomic in-
compatibility measure into relative incompatibility.

3 Results

To assess performance of these clustering methods on random sam-
ples of divergent nucleotide sequences, we used 100 random samples
of 10 000 sequences from three metabarcode reference databases
[16, 18S and Cytochrome Oxidase I (COI)] from the CALeDNA
project Curd et al. (2019). We were unable to perform clustering of
these datasets using SpClust because the program did not complete
in a feasible amount of time (we allowed for a week of computation-
al time to complete the clusterings of 100 random samples for each
method). In the main figures, we display the results against
UCLUST, but because of the high number of clusters and high
Coefficient of Variation of cluster sizes from CD-HIT (see
Supplementary Figs S8, S15 and S16), we display the CD-HIT
results in the Supplementary Material. For CD-HIT, we used the
lowest possible similarity threshold, which is 80%, to attempt to
create clusters of similar sizes to AncestralClust.

We used the COI database to explore the relationships between
taxonomic incompatibility and the number of clusters
(Supplementary Fig. S1), taxonomic incompatibility and the
Coefficient of Variation (Supplementary Fig. S2) and taxonomic in-
compatibility and both the number of clusters and the Coefficient of
Variation (Supplementary Fig. S3). Notice that, taxonomic incom-
patibility increases as the number of clusters increases and taxonom-
ic incompatiblity decreases as the Coefficient of Variation decreases.
Also, the relationships between relative incompatibility and the
number of clusters (Supplementary Fig. S4), relative incompatibility
and the Coefficient of Variation (Supplementary Fig. S5) and relative
incompatibility and both the number of clusters and the Coefficient
of Variation (Supplementary Fig. S6) similarly show the same
increasing or decreasing trends for species, genus and family taxo-
nomic levels. This shows that comparisons of methods cannot be
done fairly without also referencing differences in number of clusters
and variance in cluster sizes inferred by the different methods.

We compared AncestralClust against UCLUST using relative
NMI and the Coefficient of Variation for species (Fig. 2), genus,
family, order, class and phylum levels (Supplementary Fig. S7) for
the 16S, 18S and COI metabarcoding datasets. We used r¼750

Fig. 2. Relative NMI at the species level against Coefficient of Variation for AncestralClust and UCLUST for 100 samples of 10 000 randomly chosen 16S, 18S and COI refer-

ence sequences from the CALeDNA Project (Curd et al., 2019). The similarity threshold for UCLUST was 0.58. For AncestralClust, we used 750 initial random sequences

with 15 initial clusters
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random initial sequences, which is 7.5% of the total number of
sequences in each sample, and b¼15 initial clusters. The choice of r
and b is described in Supplementary Appendix A. Results for CD-
HIT (Supplementary Fig. S8) show that CD-HIT creates hundreds of
clusters for every barcode with a high Coefficient of Variation and
tends to have a lower relative NMI than AncestralClust. Notice in
Figure 2 that, relative NMI tends to be higher with a lower coeffi-
cient of variation for AncestralClust across all barcodes. This sug-
gests, that for these divergent eDNA sequences, AncestralClust
provides clusterings that are more even in size and that are more
consistent with conventional taxonomic assignment. We also meas-
ured relative purity and relative incompatibility and Coefficient of
Variation using AncestralClust, UCLUST and CD-HIT for the same
datasets under the same running conditions. Notice in Figures 3 and
4, AncestralClust tends to create balanced clusters with higher rela-
tive purities and lower relative taxonomic incompatibilities com-
pared to UCLUST at all taxonomic levels. For relative
incompatibility for metabarcode 16S (Supplementary Fig. S9),
AncestralClust performs noticeably better than UCLUST at the spe-
cies and genus levels but at the family, order, class and phylum levels
it has either the same or slightly more taxonomic incompatibility,
but with substantially lower Coefficient of Variation of the cluster
sizes. Also, at the species, genus and family levels, there is a clear
negative correlation between UCLUST relative incompatibility and
Coefficient of Variation. This illustrates the observation that cluster-
ings with a higher variance in cluster sizes tend to generate lower
taxonomic incompatibility. For relative purity for 16S,

AncestralClust has noticeably higher relative purities than UCLUST
at every taxonomic level (Supplementary Fig. S10).

At the order, class and phylum levels for metabarcode 18S
AncestralClust tends to have less relative incompatibility
(Supplementary Fig. S11) but not at the species, genus or family

level. For relative purity of 18S, AncestralClust shows higher relative
purities than UCLUST at the family, order, class and phylum levels

but lower relative purities at the species and genus levels
(Supplementary Fig. S12). The reason for this difference in relative
performance between low and high taxonomic levels is that when d,

the number of taxonomic groups, approaches N, the total number
of sequences in a sample, the performance measured become in-
creasingly sensitive to the value of k. As defined by Equation 1,

when d¼N, purity takes the value k/N. So at lower taxonomic lev-
els with large values of d, methods that defines a high number of

clusters (large value of k) will tend to have higher purity
(Equation 1). The same effect is observed for taxonomic incompati-
bility (Equation 4). When d¼N taxonomic incompatibility is 0.

Thus, as d approaches N, taxonomic incompatibility becomes in-
creasingly sensitive to values of k. This sensitivity to k is observed in

the raw values of purity (Supplementary Fig. S13) and incompatibil-
ity (Supplementary Fig. S14) where the average number of species,
genera and families in a sample is high (8369.1, 5129.9 and 2524.2,

respectively), while the average number of phyla in a sample is low
(50.4). 16S and COI have fewer taxonomic groups than 18S at every
taxonomic level and thus are less sensitive to k.

Fig. 3. Relative purity against coefficient of variation for AncestralClust and UCLUST for 100 samples of 10 000 randomly chosen COI reference sequences. COI reference

sequences are from the CALeDNA Project (Curd et al., 2019). The similarity threshold for UCLUST was 0.58. For AncestralClust, we used 750 initial random sequences with

15 initial clusters
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For CD-HIT, relative purities of 16S, 18S and COI tends to be
similar or lower than AncestralClust at every taxonomic level
(Supplementary Fig. S15). In addition, relative incompatibility of
16S and 18S tends to be similar or higher than AncestralClust at
every taxonomic level (Supplementary Fig. S16). For COI, rela-
tive incompatibility tends to be higher or similar at species, genus
and family levels, but lower at order, class and phylum levels,
but with substantially higher Coefficient of Variation in cluster
size.

Next, we analyzed two datasets with different properties: one
dataset of divergent species from the same gene and another dataset
of six paralogous genes from species of the same phylum. In the first
dataset, we expect the sequences to cluster according to species. In
the second dataset, we expect the sequences to cluster according to
genes. The first dataset contained 13 043 sequences from the COI
CaleDNA database from 11 divergent species that were from seven
different phyla and 11 different classes and the second dataset con-
tained sequences from six different genes from taxonomically

Fig. 4. Relative incompatibility against coefficient of variation for AncestralClust and UCLUST for 100 samples of 10 000 randomly chosen COI reference sequences. COI ref-

erence sequences are from the CALeDNA Project (Curd et al., 2019). The similarity threshold for UCLUST was 0.58. For AncestralClust, we used 750 initial random sequen-

ces with 15 initial clusters

Table 1. Comparisons of clustering methods using 13 043 COI sequences from 11 different species

Method No. of clusters Time (s) Mem (MB) Relative purity

(species)

Relative incom-

pat. (species)

Relative NMI

(species)

Coeff. of Var.

AncestralClust 11 293.2 19.3 3.6271 0 551.09 0.8574

UCLUST 11 <1 9.9 3.1204 0.0182 474.63 0.8300

CD-HIT 24 5.86 43.9 3.6180 0 241.66 1.2031

SpClust (fast) 1 152046.5 2678.9 1 0 1 —

SpClust (moderate) 1 188172.9 6457.6 1 0 1 —

SpClust (maxPrecision) 1 189577.1 6452.5 1 0 1 —

Note: The list of species can be found in Supplementary Table S1. Relative purity, relative incompatibility and relative NMI were calculated at the taxonomic

rank of species. For UCLUST, the identity thresholds were chosen to force the expected 11 number of clusters. For CD-HIT, the lowest possible identity was

chosen which is 0.8. In the case of SpClust, Coefficient of Variation cannot be calculated for one cluster. SpClust clusters were created with version 2.
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similar species. First, we compared all methods using 13 043 COI
sequences from the 11 different species (Table 1). Ideally, we expect
these sequences to form 11 different clusters, each including all the
sequences from one species. We chose identity thresholds to enforce
the expected number of clusters for each method. We were unable
to form 11 clusters using CD-HIT because the program does not
allow clustering of sequences with identity thresholds < 80% at de-
fault parameters. For SpClust, we used the three precision modes
(fast, moderate and maxPrecision) available for the method. In this
analysis, AncestralClust achieved a perfect clustering (the raw purity
was 1 and relative incompatibility was 0) and it had the second low-
est memory usage, although it was the second slowest. CD-HIT also
had a raw purity of 1 but formed more than twice the number of
clusters than expected. UCLUST was one of the fastest methods and
used the least amount of memory but had the second lowest relative
purity with the third highest relative NMI values. SpClust only iden-
tified one cluster, with a computational time of �2 days. In com-
parison, AncestralClust took �5 minutes and UCLUST used < 1 s.

Next, we analyzed ’genomic set 1’ from Matar et al. (2019),
which consists of 39 sequences from six homologous genes
(FCER1G, S100A1, S100A6, S100A8, S100A12 and SH3BGRL3 in
Table 2). We expect these sequences to form six clusters. We varied
the identity thresholds for UCLUST using thresholds 0.4, 0.6 and
0.8. For CD-HIT, we used the lowest identity threshold available on
default parameters which is 0.8. Since this dataset contained six dif-
ferent genes, we calculated relative NMI and relative purity using
genes as the categories instead of taxonomy, and did not use taxo-
nomic incompatibility as an accuracy measure. Only AncestralClust
and UCLUST produced the expected number of clusters, and among
the methods and parameters that created the expected number of
clusters, AncestralClust had the highest relative purity value.
AncestralClust was the second slowest method and had the highest
memory requirements due to the wavefront algorithm alignment,
which is OðnsÞ in running time and Oðs2Þ in memory requirements,
where n is the read length and s is the alignment score. Since align-
ments were performed using six different genes that were longer
than 1.5 kb (the average sequence length was 2387.9 bp and the lon-
gest sequence was 5363 bp), this resulted in high values of n and s.
SpClust had the highest relative NMI but lower relative purity than
AncestralClust for all precision modes, however, it failed to produce
the expected number of clusters and found fewer clusters with a
higher Coefficient of Variation than AncestralClust, making the
results difficult to compare.

We measured the time and memory requirements of
AncestralClust using datasets containing 100, 1000, 10 000 and
100 000 sequences from both the 16S and the COI reference data-
base for 1 and 8 CPUs (Supplementary Fig. S23). We created ‘low’
divergence datasets by randomly choosing one sequence from the
database and selecting all of its nearest sequences based on tax-
onomy information. We also created ‘high’ divergence datasets
which were created by randomly choosing sequences from the

database that are from different phyla. We used the wavefront algo-
rithm to investigate whether there was a substantial increase of

memory requirements with the ‘high’ divergence dataset given that
the alignment algorithm is quadratic with respect to the alignment
score. Unsurprisingly, the ‘high’ divergence datasets had the longest

running time (Supplementary Fig. S23A) and consumed the most
memory (Supplementary Fig. S23B). However, there were not sub-

stantially large differences in running times and memory usage be-
tween ‘high’ and ‘low’ divergent datasets. In addition, the run time
was significantly reduced by using more CPUs. The use of more

CPUs also did not substantially increase the memory requirements.

4 Conclusions

We developed a phylogenetic-based clustering method,
AncestralClust, specifically to cluster divergent metabarcode sequen-

ces. We performed a comparative study between AncestralClust and
widely used clustering programs UCLUST and CD-HIT, and for di-
vergent sequences, SpClust. UCLUST is substantially faster than

AncestralClust and should be the preferred method if computational
speed is the main concern (i.e. quick clustering of a large amount of

raw sequencing reads from next-generation sequencing technologies
for error correction). However, AncestralClust tends to form clus-
ters of more even size with lower relative taxonomic incompatibility
and higher relative NMI and relative purity than other methods, for
the relatively divergent sequences analyzed here. We recommend the

use of AncestralClust when sequences are divergent, especially if a
relatively even clustering is also desirable, for example for various
divide-and-conquer approaches where computational speed of

downstream analyses increases faster than linearly with cluster size.
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Table 2. Comparisons of clustering methods using 39 sequences from six paralogous genes from Matar et al. (2019)

Method No. of clusters Time (s) Memory (MB) Relative purity Relative NMI Coeff. of Var.

AncestralClust 6 370.3 412.0 1.7619 1.8660 0.3982

UCLUST (id¼ 0.4) 6 1 15.4 1.3810 1.5667 0.5396

UCLUST (id¼ 0.6) 19 1 20.1 2.1538 1.4379 0.7166

UCLUST (id¼ 0.8) 29 1.9 20.4 1.6923 1.1717 0.4565

CD-HIT (id¼ 0.8) 31 0.48 39.9 1.2308 1.0950 0.4574

SpClust (fast) 4 44.6 166.2 1.4167 2.2463 0.8432

SpClust

(moderate)

4 112.5 166.1 1.6818 2.4335 0.6453

SpClust (max

precision)

4 570.1 166.0 1.6818 2.9449 0.6809

Note: ‘id’ refers to the identity threshold used. We used identity thresholds of 0.4, 0.6 and 0.8 for UCLUST. We used precision levels of fast, moderate and

maximum for SpClust using version 1 since version 2 only produced one cluster for all modes.

AncestralClust 669

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/3/663/6404580 by U
niversity of C

alifornia Berkeley user on 19 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab723#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab723#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab723#supplementary-data


References

Balaban,M. et al. (2019) Treecluster: clustering biological sequences using

phylogenetic trees. PLoS One, 14, e0221068.

Bonder,M.J. et al. (2012) Comparing clustering and pre-processing in tax-

onomy analysis. Bioinformatics, 28, 2891–2897.

Chen,Q. et al. (2018) Comparative analysis of sequence clustering methods

for deduplication of biological databases. J. Data Inf. Qual., 9, 1–27.

Curd,E.E. et al. (2019) Anacapa toolkit: an environmental DNA toolkit for

processing multilocus metabarcode datasets. Methods Ecol. Evol., 10,

1469–1475.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than blast.

Bioinformatics, 26, 2460–2461.

Farris,J.S. (1972) Estimating phylogenetic trees from distance matrices. Am.

Nat., 106, 645–668.

Fu,L. et al. (2012) Cd-hit: accelerated for clustering the next-generation

sequencing data. Bioinformatics, 28, 3150–3152.

Ghodsi,M. et al. (2011) Dnaclust: accurate and efficient clustering of phylo-

genetic marker genes. BMC Bioinformatics, 12, 1–11.

Huang,Y. et al. (2010) CD-HIT Suite: a web server for clustering and compar-

ing biological sequences. Bioinformatics, 26, 680–682.

Jukes,T.H. et al. (1969) Evolution of protein molecules. Mammalian Protein

Metab., 3, 21–132.

Lassmann,T. (2020) Kalign 3: multiple sequence alignment of large

datasets. Bioinformatics, 36, 1928-1929.

Li,W. et al. (2001) Clustering of highly homologous sequences to reduce the

size of large protein databases. Bioinformatics, 17, 282–283.

Marco-Sola,S. et al. (2020) Fast gap-affine pairwise alignment using the wave-

front algorithm. Bioinformatics, 1–8.

Matar,J. et al. (2019) Spclust: towards a fast and reliable clustering for

potentially divergent biological sequences. Comput. Biol. Med., 114,

103439.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Nilsson,R.H. et al. (2006) Taxonomic reliability of DNA sequences in public

sequence databases: a fungal perspective. PLoS One, 1, e59.

Ratnasingham,S. and Hebert,P.D. (2007) Bold: the barcode of life data system

(http://www. barcodinglife. org). Mol. Ecol. Notes, 7, 355–364.

Rusch,D.B. et al. (2007) The sorcerer ii global ocean sampling exped-

ition: northwest Atlantic through eastern tropical pacific. PLoS Biol.,

5, e77.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Schoch,C.L. et al. (2020) NCBI taxonomy: a comprehensive update on cur-

ation, resources and tools. Database, 2020, baaa062.

Schütze,H. et al. Introduction to Information Retrieval. Cambridge University

Press, Cambridge, UK, 2008.

Stamatakis,A. (2014) Raxml version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Yang,Z. (2014) Molecular Evolution: A Statistical Approach. Oxford

University Press, Oxford, UK.

Zheng,W. et al. (2019) A parallel computational framework

for ultra-large-scale sequence clustering analysis. Bioinformatics, 35,

380–388.

Zou,Q. et al. (2018) Sequence clustering in bioinformatics: an empirical study.

Brief. Bioinformatics, 21, 1–10.

670 L.Pipes and R.Nielsen

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/3/663/6404580 by U
niversity of C

alifornia Berkeley user on 19 O
ctober 2022


	tblfn1
	tblfn2

